Numerical Algorithms Group nag

Title: Calling C Library DLLs from C#
Utilizing legacy software

Summary: For those who need to utilize legacy software, we provide techniques for calling
unmanaged code written in C from C#.

The .NET framework was designed to be the “lingua franca” for Windows development, with the
expectation that it will set a new standard for building integrated software for Windows. However, it is
inevitable that there is a time lag before .NET is fully adopted and existing applications are recoded. In
particular, there is a large body of legacy code that will likely never be rewritten in .NET. To address this
situation, Microsoft provides attributes, assembly, and marshaling. At the Numerical Algorithms Group
(where | work), our particular interest in using these techniques is to utilize numerical software developed
in C from within the .NET environment. Because C# is the premier .NET language, the examples |
present here are in C#. While | use an example of data types that are current in the NAG C Library, the
techniques | present are general enough for calling unmanaged code written in C from C# directly.

The NAG C Library uses the following data types as parameters:

e Scalars of type double, int, and Complex. These are passed either by value or by
reference (as pointers to the particular type).

e enum types.

o Arrays of type double, int, and Complex.

e Alarge number of structures, generally passed as pointers.

o A few instance of arrays which are allocated within NAG routines and have to be freed by
users (these have type double™™).

e Function parameters (also know as “callbacks”). These are pointers to functions with
particular signatures.

For convenience, | include a C DLL containing definitions of all the functions being called from C#. This
DLL is available electronically from DDJ (see “Resource Center,” page 4) and NAG
(http://www.nag.com/public/ddj.asp).

For instance, take the example of a C function that takes two parameters of the type double and double*;
that is, the first parameter is input (pass by value) and the second is output (pass by reference in non-C
parlance). The corresponding C# signature for the C function is then double, ref double. Listing One
presents the definition of the C function and its call from C#. In C#, you have to provide the DLL import
attribute (line 5), specifying how the C signature maps to C#. Also the qualifier ref has to be used twice, in
the declaration of the C function and in its call. Finally, note the use of the assembly directive,
System.Runtime.InteropServices (line 3), which is important because it is the classes defined within the
InteropServices that provide the mapping between managed code and unmanaged code.

Arrays are the bedrock of numerical programming. By definition arrays are passed by reference in both C
and C#. A C function having a one-dimensional array as a parameter with the prototype:

void OneDArray(double AnArray[]);

© The Numerical Algorithms Group 1

Numerical Algorithms Group nag

has the C# signature given by:
public static extern void OneDArray(double [] AnArray);

With this proviso, the call is straightforward; see Listing Two.

Two-dimensional arrays are more interesting. In C, two-dimensional arrays are of the type pointer to
pointer. For example, a two-dimensional array of doubles would have the prototype, double **. However,
these are rarely used in practice as they imply noncontiguous storage, whereas numerics are best carried
out using contiguous storage. Numerical C code using “notional” two-dimensional arrays frequently store
data in row-major order. For example, to read a two-dimensional array of size m*n (m rows and n
columns) into contiguous storage, you might have the following:

for (i=0; i<m; i++)
for (j=0; j<n; j++)
scanf("%If", a[i*tda+j]);

where fda is the second dimension of a, in this case tda=n.

In Fortran the equivalent construction would be:

DO 10 I=1,M
DO 10 J=1,N

READ(5,*) A(l,J)

10 CONTINUE

Here the A(l,J) construction is equivalent to (using C notation):

a[(J-1)*lda + I-1]

where Ida refers to the first dimension of a. This implies column major storage starting with indices
starting at 1 rather than 0.

The point to note is that the A(l,J) notation in Fortran squirrels away the complexity of array element
access. If we had such a notation in C, it might have been A[i,j]. This is precisely what you have in C#.
Hence, the notional two-dimensional array in C, double fred]] is represented in C# as double [,] fred.
Listing Three shows an example of the use of a C function using a two-dimensional array from C#. It is
worth noting how well the “notional” two-dimensional C array dovetails with the C# double type. The C#
array is a proper class, with members available to provide us with information on the dimensions of the
array; hence, the C# member function callTwoDarray needs to have just the one parameter.

Struct is a major type in C but in C# (being a value type), it is but a poor cousin to the class type.
However, it can be mapped to a struct type in C#. The simplest and the most ubiquitous structure in
numerics is the complex type, being defined as a pair of reals. In Listing Four, the struct type is defined in
C and its equivalent in C#. In particular, you have to tell the C# compiler that the structure members are
laid out sequentially in memory by the use of the attribute, [StructLayout(LayoutKind.Sequential)]. Given
this information, you can treat the complex type as a regular object, passing it by value, reference, or as
an array. Listing Four shows how you can access information from a C function of the type Complex,

© The Numerical Algorithms Group 2

Numerical Algorithms Group nag

which has three parameters, inputVar passed by value, OutputVar passed by reference, and an array of
the Complex type. There is one further point to note here: As structures are of the type value in C#, we
have to tell the compiler whether arrays are read or write. You do this by providing the attribute '[In, Out]'
to the array parameter.

Structures can get very complicated indeed. Structure members can be scalars, arrays, pointers to other
structures, and the like. Pointers being taboo (or at least very undesirable) in C# can be specified in C#
as the IntPtr type. Listing Five presents a C and C# example showing the use of a Marshal class method
to print the elements of an array that has been allocated internally within a C function. Memory has to be
freed explicitly in this case within the unmanaged code.

Function parameters, also known as “callbacks”, play a central role in numerical software. These are
required in cases where code to carry out some specific task has to be supplied to a function. This can
occur, for example, in optimization software where the value of the objective or the first derivatives have
to be computed on a problem-specific basis. The difficulty with callbacks is mainly that they imply a
reversal of the situation I've been looking at so far; that is, managed code (in C#) calling unmanaged
code. Instead, the callback function calls the managed code being called by C. C# provides the delegate
type to cater for this situation. An appropriate signature of the callback function is provided and an
instance of this type created using a construction such as:

NAG_E04CCC_FUN objfun = new NAG_E04CCC_FUN (funct);

Listing Six presents an example of a simple callback. This is a simple mechanism when the callback has
simple types, but it gets more interesting when we have parameters of the callback that are arrays and
structures that may have to carry information back to the unmanaged code. In this case, you have to use
both marshaling techniques and attributes to the structure. This is illustrated in Listing Seven where |
show how to handle arrays and structures within callbacks. The delegate in this case has an array
parameter. If you use the following signature (which appears to be quite a reasonable signature in the first
instance), we find that when the delegate is called from C, the array appears to be of length 1. This
presumably has to do with the fact that C pointers do not carry any information on the length of the array.
The trick is to specify the array pointer as of C# type IntPtr and subsequently copy data to and from the
IntPtr parameter.

There are two more data types that occur in C and are worth mentioning. Enum types are an integral type
that are mapped one to one between C and C#. Listing Eight illustrates how enum values may be passed
from C# to C.

The final type to consider is the string type in C#, mapping to char* type in C. When a string type is
defined in C# and passed to C, the interop services provide the conversion to ASCII by default. | use the
StringBuilder type because this is a reference type and can grow and shrink as required. Listing Eight
illustrates a C function modifying a string. For users of the NAG C Library, we provide an Assembly of
structures, functions, and delegate signatures within a Nag namespace. (See “Wrapping C with C# in
.NET,” by George Levy, C/C++ User Journal, January 2004). We also provide examples of using this
assembly from C# for some widely used NAG routines.

By Shah Datardina. Shah is a senior technical consultant for the Numerical Algorithms Group. He can
be contacted via support@nag.co.uk.

© The Numerical Algorithms Group 3

Numerical Algorithms Group nag

Numerical Algorithms Group

www.nag.com / info@nag.com (North America)
www.nag.co.uk / info@nag.co.uk (All Others) -

© The Numerical Algorithms Group 4

davidc
Pencil

davidc
Pencil

Numerical Algorithms Group

Na

Listing One

/***

* C Function Scalars *
***/
#define NAG CALL _ stdcall
#define NAG DLL EXPIMP _ declspec(dllexport)

NAG DLL_EXPIMP void NAG CALL Scalars(double, double*);
NAG_DLL_EXPIMP void NAG_CALL Scalars(double in, double *out)
{

*out = in;

}

/***

* C# Class *

***/

using System;
using System.Runtime.InteropServices;
namespace DDJexamples
{
public class ExerciseScalars

{

[DllImport ("cmarshaldll"™)]

public static extern void Scalars(double invar, ref double outvar);

public static void CallScalars (double invar, ref double outvar)

{
Scalars (invar, ref outvar);

}

public static void Main ()

{
double invar = 5.0;
double outvar = 0.0;
CallScalars (invar, ref outvar):;

Console.WriteLine ("invar = {0}, outvar = {1}", invar, outvar);

© The Numerical Algorithms Group

Numerical Algorithms Group

Na

Listing Two

/***

* C Function OneDArray *
***/

#define NAG_CALL _ stdcall
#define NAG_DLL_EXPIMP _ declspec (dllexport)

NAG DLL EXPIMP void NAG_CALL OneDArray (int n, double []);
NAG DLL_EXPIMP void NAG CALL OneDArray(int n, double anArray[])
{

int i;
for (i=0; i<n; i++)
anArray[i] = 99.0;

}

/***

* C# Class *

***/

using System;
using System.Runtime.InteropServices;
namespace DDJexamples

{

public class ExerciseOneDArray

{

[DllImport ("cmarshaldll")]
public static extern void OneDArray (int n, double [] anArray);

public static void CallOneDArray (double [] anArray)
{
OneDArray (anArray.GetLength (0), anArray);
}
public static void Main()
{
int n=2;
double [] anArray = new double [n];
CallOneDArray (anArray) ;
for (int i=0; i<n; 1i++)
Console.WriteLine ("{0}", anArray([i]):;

© The Numerical Algorithms Group

Numerical Algorithms Group

Na

Listing Three

/***

* C Function TwoDArray *

***/

#define NAG _CALL _ stdcall

#define NAG_DLL_EXPIMP _ declspec (dllexport)

NAG_DLL_EXPIMP void NAG_CALL TwoDArray(int m, int n, double [], int tda);

#define A(I,J) a2dArray[I*tda+J]

NAG DLL_EXPIMP void NAG CALL TwoDArray(int m, int n, double a2dArrayl(],

{
int i, j, k = 0;
tda = n;
for (i=0; i<m; i++)
for (3=0; j<n; J++)
{
A(i,3) = ++k;
}
}

/***

* C# Class

***/

using System;
using System.Runtime.InteropServices;
namespace DDJexamples

{

public class ExerciseTwoDArray

{

[DllImport ("cmarshaldll")]

*

public static extern void TwoDArray(int m, int n, double

int tda);

public static void CallTwoDArray (double [,] a2dArray)

{

TwoDArray (a2dArray.GetLength (0),

az2dArray.GetLength (1),

a2dArray, a2dArray.GetLength(l));

}
public static void Main ()
{
int m=3;
int n=2;

double [,] a2dArray = new double

CallTwoDArray (a2dArray) ;
for (int i=0; i<m; i++)
{
for (int j=0; j<n; J++)
Console.Write ("{0}
Console.WriteLine();

© The Numerical Algorithms Group

’

[m,n];

a2dArray([i,jl);

]

a2dArray,

int tda)

Numerical Algorithms Group

Listing Four

[Kk ok K ok kK ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K

* C Function TryComplex *

Kok ok K ok ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok K ok K ok ok K ok ok K ok K ok ok K ok K ok ok ok ok kK ok Kk ok K ok k Kk k kR k /

#define NAG CALL _ stdcall

#define NAG_DLL_EXPIMP _ declspec(dllexport)
typedef struct { /* NAG Complex Data Type */
double re,im;
} Complex;

NAG_DLL_EXPIMP void NAG_CALL TryComplex (Complex inputVar, Complex *outputVar, int n,

NAG_DLL_EXPIMP void NAG_CALL TryComplex (Complex inputVar, Complex *outputVar, int n,
{

Complex arrayl[l]);
Complex arrayl[]

outputVar->re = ++inputVar.re;
outputVar->im = ++inputVar.im;

array[0].re = 99.0;
array[0].im = 98.0;
array[l].re = 97.0;
array[l].im = 96.0;

}
/**************‘k*‘k*‘k*‘k**
* C# Class *
‘kk‘kk‘kk‘k‘k*‘k*‘k***‘k*‘k*****‘k*‘k*‘k*‘k*‘k*****‘kk*k*k***k*k*k*k*k*k*k*k/
using System;
using System.Runtime.InteropServices;
namespace DDJexamples
{
// Nag Complex type
[StructLayout (LayoutKind.Sequential)]
public struct Complex
{
public double re;
public double im;
}i

public class ExerciseTryComplex

{

[Dl1lImport ("cmarshaldll")]
public static extern void TryComplex (Complex inputVar, ref Complex outputVar,
int n, [In, Out] Complex [] array);

public static void CallTryComplex (Complex inputVar, ref Complex outputVar, Complex [] array)
{
int n = 2;
TryComplex (inputVar, ref outputVar, n, array);
}
public static void Main ()
{
int n=2;
Complex inputVar = new Complex();
Complex outputVar = new Complex();
Complex [] array = new Complex[n]
inputvVar.re = 1.0;
inputvVar.im = 2.0;

;

CallTryComplex (inputVar, ref outputVar, array);
Console.WriteLine ("outputVar ({0}, {1})", outputVar.re, outputVar.im);
Console.WriteLine ("Array on output");
for (int i1 = 0; i<array.GetLength(0); i++)
Console.WriteLine ("{0} {1}", arrayl[i].re, array[i].im);

© The Numerical Algorithms Group

Numerical Algorithms Group

Listing Five

[Kk ok K ok kK ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K

* C Function MarshalStructC *
******************‘k*‘k*‘k**/
#define NAG CALL _ stdcall
#define NAG DLL_EXPIMP _ declspec (dllexport)

#include <stdlib.h>
typedef struct
{
int array length;
double *array;
} marshalStruct;
NAG_DLL_EXPIMP void NAG_CALL MarshalStructC(marshalStruct *pointerinStruct);
NAG_DLL_EXPIMP void NAG_CALL FreeMarshalStructptr (marshalStruct *pointerinStruct);
/**/
NAG_DLL_EXPIMP void NAG_CALL MarshalStructC(marshalStruct *pointerinStruct)
{
int 1i;
pointerinStruct->array = (double *)malloc((size_t) (sizeof (double)*pointerinStruct->array length));
for (i = 0; i <pointerinStruct->array length; i++)
{
pointerinStruct->array[i] = (double) (i) + 1.0;
}
}
NAG_DLL_EXPIMP void NAG_CALL FreeMarshalStructptr (marshalStruct *pointerinStruct)
{
free (pointerinStruct->array);
pointerinStruct->array = 0;
}

/K ok K ok ok K ok ok ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok K ok ok K ok K ok ok K ok ok K ok Kk ok K ok kK

* C# Class *
k‘k*‘kk‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k**********k***k*k*k*k*k/
using System;
using System.Runtime.InteropServices;
namespace DDJexamples
{
[StructLayout (LayoutKind.Sequential)]
public struct marshalStruct
{
public int array length;
public IntPtr array;
bi

public class ExerciseMarshalStructC
{

[DllImport ("cmarshaldll")]
public static extern void MarshalStructC(ref marshalStruct pointerinStruct);

[DllImport ("cmarshaldll")]
public static extern void FreeMarshalStructptr (ref marshalStruct pointerinStruct) ;

public static void CallMarshalStructC(ref marshalStruct pointerinStruct)
{
MarshalStructC(ref pointerinStruct);
}
public static void Main ()

{

marshalStruct pointerinStruct = new marshalStruct() ;

pointerinStruct.array length = 5;
CallMarshalStructC(ref pointerinStruct) ;
double [] x = new double[pointerinStruct.array length];
Marshal.Copy(pointerinStruct.array, x, 0, pointerinStruct.array_length);
for (int i = 0; i < pointerinStruct.array length; i++)
Console.WriteLine ("x[{0}] = {1}", i, x[i]);

FreeMarshalStructptr (ref pointerinStruct);

© The Numerical Algorithms Group

Numerical Algorithms Group

Na

Listing Six

/***

* C Function CallBack *

***/

#define NAG _CALL _ stdcall
#define NAG DLL_EXPIMP _ declspec (dllexport)

typedef void (NAG CALL * NAG DOl FUN) (double *);
NAG DLL EXPIMP void NAG CALL CallBack (NAG DOl FUN f , double *output);
NAG DLL _EXPIMP void NAG CALL f (double *x);

/*ox/
NAG DLL_EXPIMP void NAG CALL CallBack(NAG DOl FUN f , double *output)
{
(*f) (output) ;
}
NAG DLL _EXPIMP void NAG _CALL f (double *x)
{
*x = 100.0;
}

/***

* C# Class *
***/
using System;
using System.Runtime.InteropServices;
namespace DDJexamples
{
// delegate
public delegate void NAG DOl FUN (ref double output);

public class ExerciseSimpleCallback

{
[DllImport ("cmarshaldll")]

public static extern void CallBack(NAG D01 FUN f , ref double output);

public static void CallCallBack(NAG DOl FUN f, ref double output)

{
CallBack(f, ref output):;
}
public static void Main ()
{
double output = 0.0;
NAG DOl FUN F = new NAG DOl FUN (f);
CallCallBack (F, ref output);
Console.WriteLine ("Ouput = {0}", output);
}
public static void f (ref double output)

{
output = 100.0;

© The Numerical Algorithms Group

10

Numerical Algorithms Group na

Listing Seven

/***

* C Function CallbackWithStruct *
***/
#define NAG_CALL _ stdcall

#define NAG DLL_EXPIMP _ declspec(dllexport)

typedef struct {
int flag;
} Nag_Comm;

typedef void (NAG CALL * NAG E(04UCC_FUN) (int, double *, Nag Comm *);

extern NAG DLL _EXPIMP void NAG_CALL CallbackWithStruct (NAG_E04UCC_FUN funct, int array length,
double *a, Nag_Comm *user comm);
void NAG CALL funct (int n, double *x, Nag Comm *user comm);

/* %/
NAG DLL EXPIMP void NAG CALL CallbackWithStruct (NAG E04UCC_FUN funct , int n, double *a, Nag Comm
*user comm)
{
(*funct) (n, a, user_comm);
if (user comm->flag == 99)
{
al0] = 99.0;
}
}
void NAG_CALL funct (int n, double *x, Nag Comm *user_comm)
{
int i;
for (i=0; i<n; i++)
{
x[1]++;
}
if (x[0] < 3.0)
{
user comm->flag = 99;
}
}

/***

* C# Class *
***/
using System;
using System.Runtime.InteropServices;
namespace DDJexamples

{

[StructLayout (LayoutKind. Sequential)]
public struct Nag Comm
{
public int flag;
bi

// delegate
public delegate void NAG _EO04UCC_FUN (int array length, IntPtr a, ref Nag Comm comm) ;

public class ExerciseCallBackWithStruct

{
[DllImport ("cmarshaldll")]
public static extern void CallbackWithStruct (NAG_E04UCC_FUN f , int array length, double
[] a, ref Nag Comm user_ commt) ;

© The Numerical Algorithms Group 11

Numerical Algorithms Group

Na

public static void CallCallbackWithStruct (NAG E0O4UCC_FUN f, int array length, double []

ref Nag Comm user comm)
{
CallbackWithStruct (f, array length, a, ref user comm);
}
public static void Main ()

{
double [] a = {1.0, 2.0, 3.0, 4.0, 5.0};

int array length = a.GetLength(0);

Nag Comm user comm = new Nag Comm() ;

NAG_E04UCC_FUN F = new NAG_E04UCC_FUN (funct);
CallCallbackWithStruct (F, array length, a, ref user comm);
Console.WriteLine ("user comm.flag = {0}", user comm.flag);
Console.WriteLine ("a[0] altered further as a result of user comm.flag,

al0]);
}
public static void funct(int n, IntPtr xptr, ref Nag_Comm user_comm)
{
double [] x = new double[n];
Marshal.Copy(xptr, x, 0, n);

int 1i;
for (i=0; i<n; i++)
{
x[1]++;
}
if (x[0] < 3.0)
{
user comm.flag = 99;

}
Marshal.Copy(x, 0, xptr, n);

© The Numerical Algorithms Group

afo] = {01",

a,

12

Numerical Algorithms Group

Na

Listing Eight

/***
* C Function EnumString *
***/

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#define NAG CALL _ stdcall

#define NAG DLL_EXPIMP _ declspec(dllexport)

typedef enum { red=101, green, blue,black } colour;
NAG DLL EXPIMP void NAG CALL EnumString(colour rainbow, char *rainbowcolour);
NAG DLL EXPIMP void NAG CALL EnumString(colour rainbow, char *rainbowcolour)
{
if (rainbow == black)
{

strcpy (rainbowcolour, "Black is not a rainbow colour");

else
{
strcpy (rainbowcolour, "This is a rainbow colour");
}
}

/***

* C# Class *
***/
using System;
using System.Runtime.InteropServices;
using System.Text;
namespace DDJexamples

{
public enum colour { red=101, green, blue,black };

public class ExerciseEnumString

{
[DllImport ("cmarshaldll")]

public static extern void EnumString(colour rainbow, StringBuilder rainbowcolour);

public static void CallEnumString(colour rainbow, StringBuilder rainbowcolour)

{

EnumString (rainbow, rainbowcolour) ;
}
public static void Main ()
{

StringBuilder colourstring=new StringBuilder ("once upon a time

colour somecolour = colour.black;
CallEnumString (somecolour, colourstring);
Console.WriteLine ("{0}", colourstring);

© The Numerical Algorithms Group

13

